Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations.
نویسندگان
چکیده
Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex.
منابع مشابه
20 Hz bursting beta activity
It has recently been found (Bekisz and Wróbel 1993) that electroencephalographic recordings from the primary visual cortex and lateral geniculate nucleus of cats attending to visual stimuli contained enhanced activity in the 20 Hz frequency band. Here we present the detailed analysis of this activity. It consisted of short (0.1-1 s) bursts of oscillations which tended to appear simultaneously i...
متن کاملSynchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat.
Synchronization of spatially distributed responses in the cortex is often associated with periodic activity. Recently, synchronous oscillatory patterning was described for visual responses in retinal ganglion cells that is reliably transmitted by the lateral geniculate nucleus (LGN), raising the question of whether oscillatory inputs contribute to synchronous oscillatory responses in the cortex...
متن کامل20 Hz bursting beta activity in the cortico-thalamic system of visually attending cats.
It has recently been found (Bekisz and Wróbel 1993) that electroencephalographic recordings from the primary visual cortex and lateral geniculate nucleus of cats attending to visual stimuli contained enhanced activity in the 20 Hz frequency band. Here we present the detailed analysis of this activity. It consisted of short (0.1-1 s) bursts of oscillations which tended to appear simultaneously i...
متن کاملRetinal waves trigger spindle bursts in the neonatal rat visual cortex.
During visual system development, the light-insensitive retina spontaneously generates waves of activity, which are transmitted to the lateral geniculate nucleus. The crucial question is whether retinal waves are further transmitted to the cortex and influence the early cortical patterns of activity. Using simultaneous recordings from the rat retina and visual cortex during the first postnatal ...
متن کاملA Computational Study of How Orientation Bias in the Lateral Geniculate Nucleus Can Give Rise to Orientation Selectivity in Primary Visual Cortex
Controversy remains about how orientation selectivity emerges in simple cells of the mammalian primary visual cortex. In this paper, we present a computational model of how the orientation-biased responses of cells in lateral geniculate nucleus (LGN) can contribute to the orientation selectivity in simple cells in cats. We propose that simple cells are excited by lateral geniculate fields with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 22 شماره
صفحات -
تاریخ انتشار 2014